Sounds of senescence: male swamp sparrows respond less aggressively to the songs of older individuals

Matthew N. Zipple, a, Susan Peters, a William A. Searcy, b and Stephen Nowicki a, c
aDepartment of Biology, Duke University, Room 137, Biological Sciences Building, 130 Science Drive, Durham, NC 27708, and bDepartment of Biology, University of Miami, 215 Cox Science Center, 1301 Memorial Drive, Coral Gables, FL 33146, USA

INTRODUCTION
As humans age, acoustic characteristics of their voice change in predictable ways (Ryan and Burk 1974; Hartman 1979; Hollien 1987; Baken 2005; Harnsberger et al. 2008; Stathopoulos et al. 2011), such that listeners are able to identify the age of a speaker with a high level of accuracy (Ptaeck and Sander 1966; Shipp and Hollien 1969; Hollien 1987; Huntley et al. 1987; Cerrato et al. 2000; Harnsberger et al. 2008). One vocal characteristic that aids in the identification of a speaker's age is fundamental frequency, as voices are deepest during people's 40s and 50s (Titze 1994; Baken 2005; Stathopoulos et al. 2011). Perception of a person's age has important implications for both men and women, as age and age-related vocal changes influence a person's perceived attractiveness to a range of audiences, including potential mates (Rajecki et al. 1991; Baize and Schroeder 1995; Feinberg et al. 2005) and potential voters (Tigue et al. 2012; Klofstad et al. 2015). For example, voters consistently express a preference for middle-aged candidates both in surveys (Pew Research Center 2019) and in elections (Manning 2019), and voters are more likely to support a candidate with a deeper voice, consistent with their age preference (Tigue et al. 2012; Klofstad et al. 2015). Although these effects are well established for humans, it is not known whether age-related declines in vocal quality have functional implications for nonhuman animals.

Advertisement signals in animals have been the focus of study for decades (Searcy and Nowicki 2005). Much of this work has been done by studying male birdsong, a commonly used advertisement signal that sometimes changes with age (reviewed in the work of Kipper and Kiefer 2010). The large majority of studies of age-related changes in birdsong have focused on the first 2 or 3 years after adulthood is reached and in many cases have documented apparent improvements in song over this time period (Kipper and Kiefer 2010). Such “delayed song maturation” has been documented across different vocal characteristics in numerous song species. For example, red-winged blackbirds, Agelaius phoeniceus, great reed warblers, Acrocephalus arundinaceus, and European starlings, Sturnus vulgaris, display an increase in repertoire size as birds increase in age during early adulthood (Yasukawa et al. 1980; Mountjoy and Lemon 1995; Forstmeier et al. 2006). Similarly, alpine accentors, Prunella collaris, display increased song complexity as they age (Langmore et al. 1996), whereas banded wrens, Thryothorus pleurostictus, display decreased deviation scores and increased note consistency (Vehrencamp et al. 2013). In contrast to the wealth of human research, little is known about whether age-related declines in vocal quality have functional implications for nonhuman animals.
of research on age-related improvements in song attributes during early adulthood, studies of later age-related declines in song attributes remain uncommon, likely due to the difficulty of repeatedly recording the same birds over large segments of their lives. Such “behavioral senescence” of vocal attributes has been documented in two studies, one of the wild great tits, Parus major (Rivera-Gutierrez et al. 2012) and the other of captive swamp sparrows (Zipple et al. 2019).

Studies of birds (Wetton et al. 1995; Mountjoy and Lemon 1996; Sundberg and Dixon 1996; Wagner et al. 1996; Richardson and Burke 1999; O’Loghlen and Rothstein 2003), lizards (Lopez et al. 2003), insects (Somashekar and Krishna 2011), mammals (Poole 1989; Ferkin 1999; Komers et al. 1999), and fish (Côté and Hunte 1993) have shown a female preference for older males, as evidenced by higher reproductive success of older males (reviewed in the work of Brooks and Kemp 2001), and this relatively high reproductive success has occasionally been associated with relatively more intense advertisement signals (Mountjoy and Lemon 1996; Sundberg and Dixon 1996; O’Loghlen and Rothstein 2003). Some studies have also demonstrated the ability of females to use assessment signals to distinguish between adult and subadult individuals (Lopez et al. 2003; O’Loghlen and Rothstein 2003), and a cross-sectional study of captive voles has shown that females prefer the scents of older individuals (Ferkin 1999). To our knowledge, however, no study has shown an ability of males or females to discriminate assessment signals based on within-individual age-related decline in the quality of those signals. To demonstrate that animals attend to such within-individual declines, it is necessary to show that receivers respond differently to a signal from an older individual as compared with a signal from the same individual when it was younger.

We have shown previously that swamp sparrow males (Melospiza georgiana) display senescent decline in several vocal characteristics as they age (Zipple et al. 2019). To test whether receivers respond to within-individual declines in song quality, we used playbacks of the songs of hand-reared male swamp sparrows of different ages to simulate intrusions on the territories of free-living male swamp sparrows. We compared the responses of territorial males to pairs of stimuli recorded from the same stimulus males, using in each case one set of songs recorded when the simulated intruder was 2 years old and another recorded when he was 10 years old.

METHODS

Song recordings

The methods used to record songs used to generate playback stimuli have been described elsewhere (Searcy et al. 2010; Zipple et al. 2019). Briefly, male swamp sparrows were collected as nestlings from Conneaut Marsh, Crawford County, PA in June 2004. They were hand-reared in the laboratory and were trained to sing over a 12-week period, beginning at approximately 2 weeks of age. Birds were trained using playback of 14 song types recorded from 14 different wild individuals in their home population.

After maturation, the songs of the hand-reared subjects were recorded in each year of adulthood, starting in their second year of life (age 1) and continuing until their death or their 12th year of life (age 11). In the spring of each year, birds were housed in individual sound isolation chambers (Industrial Acoustica AC-1 58 × 41 × 36 cm) and were recorded with Shure SM57 microphones and either an Eridol USB Audio Capture UA-1000 interface (years 1 through 8) or an M-Audio ProFire 2626 interface (years 9 through 11) attached to an Optiplex Dell computer running Sound Analysis Pro software (versions 1.04 to SAP 2011). We used the sound-triggered recording function of Sound Analysis Pro to automatically record a song (44.1 kHz). The acoustic environment and song recording process were therefore identical during all years of recording (Eridol and M-Audio have identical recording bandwidth and sampling rate), eliminating the potential for any year-specific artifacts.

Song stimuli

We generated playback stimuli from songs of these hand-reared males that were recorded when the birds were either 2 years old (recorded in May of the birds’ 3rd year) or 10 years old (recorded in May of the birds’ 11th year). We have shown that the songs of these birds declined in quality over the same age range, becoming less stereotypic within songs and less consistent between songs (Zipple et al. 2019).

We generated eight pairs of playback stimuli derived from eight different males, each of whom was recorded at age 2 and again at age 10. For each male at each age, we used 10 exemplars of one song type, the same 10 exemplars that we used for our senescence analysis (Zipple et al. 2019). These exemplars were all songs from the male’s highest performance song type (i.e., the song type with the lowest deviation score), which was consistent across years for each male. Spectrograms of three pairs of 2-year-old and 10-year-old songs used as stimuli are shown in Figure 1, and Table S1 gives statistics on the characteristics of all eight pairs of songs. Males in this population sing a modest number of song types (usually three), all of which are quite distinctive, so that exemplars are readily assignable to song types. Assignments were made by a single individual via visual comparison of spectrograms. Each song was normalized to a peak amplitude of 2.0 V and high-pass filtered at 1500 Hz (Signal v.4, Engineering Design, Berkeley, CA). Hand-reared swamp sparrows occasionally include introductory or final notes in their adult song, and we removed these from three song types because such notes are not typical in wild song in this population.

In total, we generated 16 sets of playback songs (8 males, two sets of 10 song exemplars for each male). For 12 of these sets of playback songs, exemplars were selected from the same song bout. For three playback sets, songs were selected from different bouts sung on the same day, and one playback set was comprised of songs sung on four different days. To generate playback files, we presented a song once every 10 s in the same order in which the songs were originally sung. We then repeated this sequence two more times so that for each playback test the subject heard 30 songs (10 renditions of a song type, with this sequence of 10 songs repeated three times) over a 5-min period. Song rate, therefore, was held constant during playback experiments. Although we identified a senescent decline in song rate as birds age (Zipple et al. 2019), this decline was the result of singing fewer bouts of songs rather than of producing songs at a slower rate during individual bouts.

Playback experiments

We carried out playback experiments from May 25 to June 15, 2019, with wild swamp sparrows living in Crawford County, PA in the same site (Conneaut Marsh) from which the nestlings were initially collected. We played all of our stimuli from a Marantz PMD660 recorder via an Anchor Audio AN-MINI speaker. Songs were played at an average of 85 dB SPL (range 81–88) (BK Precision model 732A, A-weighting, fast response setting). Prior to conducting playback trials, we mapped territories by identifying...
We took three precautions to prevent any habituation of territorial males to playback. First, we mapped territories using probe songs from individuals that were not used as stimuli in playback experiments. Second, we used as few probe songs as possible when mapping males’ territories (typically fewer than 20 songs per territory). Finally, after mapping a male’s territory we waited for at least 1 day before testing his response to our stimuli. These precautions appear to have been effective, as we saw no evidence of habituation in our experiment (see Results section and Figure S2).

When setting up playback experiments, we placed the playback speaker within the subject’s territory, choosing a location that would maximize visibility for the observers while also being as far from a territory boundary as possible to limit the response of any neighboring males. Some, although not all, of the subject males resided on territories adjacent to other subject males. Those males that were adjacent to other test subjects were banded after the conclusion of playbacks in order to confirm that they were each unique males. To aid in our estimation of males’ distance to the speaker, we placed flagging on either side of the speaker at distances of 2, 4, 8, and 16 m.

During a playback trial, we played the stimulus for a 5-min period and then continued observation for a 5-min post-playback period. We used the subject’s distance to the speaker averaged over the trial as our sole response measure. This measure has been shown to be a strong predictor of the likelihood of an attack in swamp sparrows (Ballentine et al. 2008) and closely related species (Searcy et al. 2006) and thus serves as a good proxy for an aggressive response. During trials, we recorded the bird’s minimum distance to the speaker over 120 consecutive 5-s blocks (60 blocks from the playback period followed by 60 blocks from the post-playback period, 10 min total observation time). We recorded territorial males’ distances as discrete estimates, based on the bird’s position relative to our reference flagging (i.e., <2 m, 2–4 m, 4–8 m, 8–16 m, >16 m). Males who were known to be greater than 16 m from the speaker or who had not yet responded to the playback were identified as being more than 16 m from the speaker.

Figure 1
(a–c) Three examples of pairs of playback stimuli. Each pair represents (left) the highest performance song type recorded when the stimulus bird was 2 years old and (right) the same song type recorded when the stimulus bird was 10 years old.
We measured each bird’s response (n = 35 territorial males) to two different playback stimuli: one composed of recordings of a 2-year-old male and one composed of recordings of the same song types sung by the same male when he was 10 years old. All sets of trials were performed 2 or 3 days apart. The order in which birds were exposed to 2-year-old and 10-year-old songs was counterbalanced across stimuli. Observers were blind to the treatment (i.e., whether a 2-year-old or 10-year-old song was being played) during all data collection.

Statistical analysis

We first calculated a male’s average distance to the speaker during each playback trial. To estimate a male’s distance during a given block of time, we took the midpoint of the distance interval as the male’s distance for that block (Peters et al. 1980). For example, if a male was 2–4 m from the speaker, we estimated his distance to be 3 m from the speaker during that 5-s block. We assumed that males that were more than 16 m from the speaker were 16–30 m from the speaker and thus on average at 24 m.

We built linear models to test for a difference in response to playback of the two sets of stimuli (all comparisons are within-subject). Specifically, we calculated the difference in average distance between the subject and the speaker during playback of the 2-year-old songs and the 10-year-old songs. We then built a linear model (equivalent to a two-tailed t-test) to test whether the birds showed a non-zero difference in their response to the two stimuli, on average. To test for effects of stimulus identity, we build a linear mixed-effects model using the R package lme4 (Bates et al. 2014; R Development Core Team 2018) that included a random effect of stimulus ID and used a chi-square test to determine whether the model that included the random effect explained the data better than the intercept-only linear model that did not include the random effect. We also used two-tailed t-tests to determine whether there were differences in response depending on the order of presentation of the stimuli or during the playback versus post-playback period.

RESULTS

Males positioned themselves closer to the speaker on average during playback of the songs of 2-year-old males as compared with the songs of the same males when they were 10-year olds (Figure 2; estimate of difference = 2.13 m, SE = 0.65 m, t = 3.28, P = 0.002). Differences in response to the two treatments did not differ between the playback and post-playback periods (Figure S1; t = 0.60, df = 34, P = 0.55) nor did we observe an effect of playback order (Figure S2; t = 1.14, df = 33, P = 0.26). We also did not observe any significant stimulus-specific effects on differences in males’ responses (Figure S3; χ² = 0.03, P = 0.87). We therefore report the intercept-only model as our final model without random effects of stimulus ID. Results were qualitatively unchanged when including random effects of stimulus ID (Table S2).

DISCUSSION

We have shown that male swamp sparrows respond differently to acoustic assessment signals based on within-individual age-related declines in vocal quality. Specifically, males approached more closely to a speaker playing songs of 2-year-old males as compared with a speaker playing songs from the same males recorded as 10-year olds. Two previous studies have shown that some song characteristics deteriorate with age later in life in songbirds (Rivera-Gutierrez et al. 2012; Zipple et al. 2019), but to our knowledge this is the first demonstration outside of humans that such deterioration affects receiver response.

Closer proximity to a playback speaker is a reliable predictor of subsequent aggression in male swamp sparrows (Ballentine et al. 2005).
decline in consistency between songs as they grow older (Zipple et al. 2019) is in agreement with the only observation of senescent decline of birdsong in wild birds (Rivera-Gutierrez et al. 2012), which suggests that the changes we observed in songs of older individuals do represent true behavioral senescence.

Second, in order to maximize males’ ability to detect behavioral senescence, we used recordings of 10-year-old males to represent the senescent song. Although wild swamp sparrows have been recaptured that are known to be nearly 8-years old (USGS 2019), it is possible that 10 years exceeds the maximum age for this population. Yet, our previous work identified a smooth decline in vocal quality from ages 2 through 11, suggesting that behavioral senescence commences well before age 10, and that 10-year-old songs are unlikely to have experienced an unnatural acceleration of the process of senescence.

It is possible that, under natural conditions, few birds survive to old age and those that do may only be the birds in the best physical condition. Under such a scenario, these birds that do survive may be the least likely to display behavioral senescence because of their high quality. If this is the case, behavioral senescence would be less important for birds’ ecology and evolution than the results of our experiment initially suggest. However, it is also possible that the birds that do survive to old age are those that invested the most in survival relative to reproduction (Stearns 1989). Under this scenario, the role of behavioral senescence under natural conditions would be more pronounced than suggested by our experiment. Therefore, before the evolutionary significance of senescence of birdsong can be understood, we need better data regarding the rate and distribution of senescent decline in natural populations.

The playback songs we used show some declines in known quality measures between the 2-year-old and 10-year-old sets (Table S1), but overall these differences seem rather minor. For example, although stereotypy does tend to decline as birds get older (Zipple et al. 2019), the 10-year-old songs used for playback were not less stereotypic than the 2-year-old songs, on average, and we do not see evidence that any differences in stereotypy between the song pairs explains a difference in subjects’ response (see Table S1 and Figure S3). Nevertheless, our subjects strongly discriminated between 2-year-old and 10-year-old songs. This pattern suggests that additional aspects of song quality deteriorated between the ages of 2 and 10: ones that swamp sparrows are attuned to, but of which we are not yet aware. A search for such traits, in swamp sparrows and other organisms, may well be rewarding.

SUPPLEMENTARY MATERIAL

Supplementary data are available at Behavioral Ecology online.

FUNDING

This work was supported by funding from the National Science Foundation (IBN-0315377), Duke University, and an National Science Foundation Graduate Research Fellowship (M.N.Z.).

The authors gratefully acknowledge the Pymatuning Ecological Laboratory for logistical support, the Pennsylvania Game Commission for access to field sites, and S. Nakay for general advice.

Data accessibility: Analyses reported in this article can be reproduced using data provided by Zipple et al. (2020).

Handling editor: Marc Naguib
REFERENCES

